Multicellularity in green algae: upsizing in a walled complex
نویسندگان
چکیده
Modern green algae constitute a large and diverse taxonomic assemblage that encompasses many multicellular phenotypes including colonial, filamentous, and parenchymatous forms. In all multicellular green algae, each cell is surrounded by an extracellular matrix (ECM), most often in the form of a cell wall. Volvocalean taxa like Volvox have an elaborate, gel-like, hydroxyproline rich glycoprotein covering that contains the cells of the colony. In "ulvophytes," uronic acid-rich and sulfated polysaccharides are the likely adhesion agents that maintain the multicellular habit. Charophytes also produce polysaccharide-rich cell walls and in late divergent taxa, pectin plays a critical role in cell adhesion in the multicellular complex. Cell walls are products of coordinated interaction of membrane trafficking, cytoskeletal dynamics and the cell's signal transduction machinery responding both to precise internal clocks and external environmental cues. Most often, these activities must be synchronized with the secretion, deposition and remodeling of the polymers of the ECM. Rapid advances in molecular genetics, cell biology and cell wall biochemistry of green algae will soon provide new insights into the evolution and subcellular processes leading to multicellularity.
منابع مشابه
Green algae and the origins of multicellularity in the plant kingdom.
The green lineage of chlorophyte algae and streptophytes form a large and diverse clade with multiple independent transitions to produce multicellular and/or macroscopically complex organization. In this review, I focus on two of the best-studied multicellular groups of green algae: charophytes and volvocines. Charophyte algae are the closest relatives of land plants and encompass the transitio...
متن کاملPlant architecture without multicellularity: quandaries over patterning and the soma-germline divide in siphonous algae
Multicellularity has independently evolved numerous times throughout the major lineages of life. Often, multicellularity can enable complex, macroscopic organismal architectures but it is not required for the elaboration of morphology. Several alternative cellular strategies have arisen as solutions permitting exquisite forms. The green algae class Ulvophyceae, for example, contains truly multi...
متن کاملThe Gonium pectorale genome demonstrates co-option of cell cycle regulation during the evolution of multicellularity.
The transition to multicellularity has occurred numerous times in all domains of life, yet its initial steps are poorly understood. The volvocine green algae are a tractable system for understanding the genetic basis of multicellularity including the initial formation of cooperative cell groups. Here we report the genome sequence of the undifferentiated colonial alga, Gonium pectorale, where gr...
متن کاملTriassic origin and early radiation of multicellular volvocine algae.
Evolutionary transitions in individuality (ETIs) underlie the watershed events in the history of life on Earth, including the origins of cells, eukaryotes, plants, animals, and fungi. Each of these events constitutes an increase in the level of complexity, as groups of individuals become individuals in their own right. Among the best-studied ETIs is the origin of multicellularity in the green a...
متن کاملChloroplast phylogenomic analyses reveal the deepest-branching lineage of the Chlorophyta, Palmophyllophyceae class. nov.
The green plants (Viridiplantae) are an ancient group of eukaryotes comprising two main clades: the Chlorophyta, which includes a wide diversity of green algae, and the Streptophyta, which consists of freshwater green algae and the land plants. The early-diverging lineages of the Viridiplantae comprise unicellular algae, and multicellularity has evolved independently in the two clades. Recent m...
متن کامل